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The procedure proposed by Kim, who is also one of the authors of this paper,
and Soedel (Journal of Sound and Vibration 129, 237–254) for formulation of
four-pole parameters of three-dimensional cavities is revised. In the procedure,
four poles were formulated in terms of the pressure responses of the cavities to
a point source. However, it is shown that using the point source model for such
a purpose may not always be valid because the pressure response function
becomes singular at the source point in such a case. In this work, the procedure
is modified by employing the surface source model and a new definition of the
input point impedance. It is shown that the modified procedure can be applied
to three-dimensional acoustic systems. Also, an interesting concept of using a
sub-system composed of the cavity and a pair of short pipes is suggested for more
accurate analysis.
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1. INTRODUCTION

The four-pole matrix is a very convenient concept to analyze complex acoustic
systems. It allows various acoustic elements of a system to be formulated
independently, then assembled later to form the system equation. Also, related
computational effort is reduced substantially because the system equation always
remains a two by two matrix. Many application examples are found on the
analyses of one-dimensional systems and lumped parameter systems [2, 3].

It is very useful to have four poles of three-dimensional cavities. If four poles
of a three-dimensional cavity in an acoustic system are available, the model of the
cavity can be easily integrated with one-dimensional or lumped parameter
elements to form the system equation. Kim and Soedel proposed a method to
formulate four-pole parameters of three-dimensional cavities [1, 4]. In their
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proposed method, four poles of a continuous system were formulated as functions
of the pressure responses of the system at the input and output points. The method
was applied to analysis of annular cylindrical cavities [1, 4, 5]. Lai and Soedel [6]
applied the procedure to analyze thin three-dimensional cavities by specializing it
to a two-dimensional formulation. In these works [1, 4–6], pressure response
functions are obtained by solving the wave equation of the cavity when it is
subjected to a point source input. The approach used in these references may not
be valid due to convergence problems as will be shown in this paper.

Because deriving four-pole matrix implies that the three-dimensional cavity is
connected to one-dimensional systems, the size of the mass flow source of concern
is generally much smaller compared to other dimensions of the cavity. Therefore,
it appears to be logical to model the source as a point source, as was done in
references [1, 4–6]. However, in this work it is shown that the point source model
cannot be used because of its singularity at the source point, and that the surface
source model has to be used for the purpose of deriving four poles of
three-dimensional cavities. Analytical solutions based on the modal expansion
method are used for the related discussion.

For practical applications, it may be more appropriate to use the concept of an
extended model made of the cavity and two short pipes attached to input and
output ports of the cavity. The geometric complexity due to the two additional
pipes may make it very complicated to find analytical solutions to the four poles
of the extended model. However, it is not considered a limitation since numerical
approach may have to be used for the analysis of virtually any practical
three-dimensional cavity. It is explained how the concept can be used to obtain
more accurate system four poles.

2. FORMULATION OF FOUR-POLE PARAMETERS FROM PRESSURE
RESPONSE FUNCTIONS

A four-pole matrix defines the relationship between the input and output
variables of an acoustic system in the frequency domain. For the acoustic system
shown in Figure 1, its four-pole equation is defined as

6Q1
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Figure 1. Acoustic system.
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Figure 2. An acoustic cavity with a distributed volume flow source.

where P and Q are the harmonic amplitudes of the acoustic pressure and volume
flow rate, subscripts 1 and 2 indicate the input and the output points, respectively,
and A, B, C and D are the four-pole parameters.

It was shown the the four-pole parameters of any acoustic system could be
formulated from the pressure response functions of the system as below [1]:

A=
f22(v)
f12(v)

, B=
1

f12(v)
, C=−f21(v)+

f11(v)
f12(v)

f22(v), D=
f11(v)
f12(v)

, (2)

where v is the circular frequency and fij (v) is defined as the pressure response of
the system at location i when the system is subjected to the harmonic volume flow
input of a unit strength at location j. From acoustic reciprocity it can be easily
shown that

f12(v)= f21(v). (3)

Therefore, four-pole parameters of any general acoustic systems can be derived
if pressure response functions are available.

A three-dimensional cavity of an arbitrary shape is shown in Figure 2. The input
mass flow source is distributed over a space which is small compared to the size
of the cavity. The linear wave equation of this three-dimensional cavity becomes
[1]

92p(r, t)−
1
c2

0

12p(r, t)
1t2 = −

1m(r, t)
1t

, (4)

where p is the acoustic pressure, c0 is the speed of sound, ṁ(r, t) defines the mass
flow source, and 92 is the Laplacian operator given as

92 =
1

A1A2A3 $ 1

1a1 0A2A3

A1

1

1a11+
1

1a2 0A3A1

A2

1

1a21+
1

1a3 0A1A2

A3

1

1a31%, (5)

where a1, a2 and a3 are the curvilinear co-ordinates necessary to define the system,
and A1, A2 and A3 are the Lamé parameters.

The solution of equation (4) may be obtained by using the modal expansion
method if the natural frequencies and the mode shapes of the acoustic cavity are



y

x

z
Lx

Lz

Ly

Q

Point source
y

x

z
Lx

Lz

Ly

Q

Surface source

(b)(a)

.   . 92

available. If the acoustic pressure is small compared to the mean pressure of the
system, the harmonic mass flow source can be represented as

ṁ(r, t)=M� (r, v) ejvt = r0Q(r, v) ejvt, (6)

where Q(r, v) is the volume flow distribution, and r0 is the average density of the
gas in the cavity. According to the procedure described in references [1, 7], the
pressure response is obtained as

p(r, t) =P(r, v) ejvt

= s
a

l=0

s
a

m=0

s
a

n=0

jc2
0vPlmn (r) g g g Plmn (r̄)Q(r̄, v)A1A2A3 da1 da2 da3

Nlmn (v2
lmn −v2)

ejvt, (7)

where r̄= r̄(a1, a2, a3) is the integration variable, j=z−1, vlmn and Plmn (r) are the
natural frequencies and the natural modes of the system, and l, m, n are mode
numbers. Nlmn is given as

Nlmn =g g g P2
lmn (r̄)A1A2A3 da1 da2 da3. (8)

Equation (2) shows that four poles can be easily formulated if the general
expression of the pressure in equation (7) has a unique convergent value at the
input and output points. In the following, it will be shown that this condition is
not satisfied when a point source model is used. A rectangular cavity with rigid
wall is used as an example to explain this problem, taking advantage of the fact
that the exact solution is available.

Figure 3. Rectangular cavities with a point source or a surface source: (a) point source, (b) surface
source.
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3. PRESSURE RESPONSE SOLUTIONS OF A RECTANGULAR CAVITY

For a rectangular cavity shown in Figure 3, A1 =1, A2 =1 and A3 =1 in
equations (5), (7) and (8). Also, the natural mode Plmn , and the natural frequency
vlmn become [8]

Plmn (x, y, z)= cos
lpx
Lx

cos
mpy
Ly

cos
npz
Lz

,

vlmn = pc0$0 l
Lx1

2

+0m
Ly1

2

+0 n
Lz1

2

%
1/2

,

l, m, n=0, 1, 2, . . . . (9)

Therefore, the pressure response function in equation (7) becomes

P(x, y, z, v)

= s
a

l,m,n=0

jc2
0vPlmn (x, y, z) g

Lx

0 g
Ly

0 g
Lz

0

M� (x̄, ȳ, z̄, v)Plmn (x̄, ȳ, z̄) dx̄ dȳ dz̄

(v2
lmn −v2)Nlmn

, (10)

where Nlmn becomes

LxLyLz /8, l, m, n=1, 2, . . . ,

LxLyLz /4, l, m=1, 2, . . . , n=0, and circulations,
Nlmn = LxLyLz /2, l=1, 2, . . . , m= n=0, and circulations,

(11)

LxLyLz , l=m= n=0.

3.1.     

A point source locating at rs =(xs , ys , zs ) is described as,

M� (x, y, z, v)= r0Q0d(x− xs )d(y− ys )d(z− zs ), (12)

where r0 is the mean density of the acoustic medium, rs defines the location of the
source point, Q0 is the volume flow harmonic amplitude, and d(·) indicates the
Dirac delta function.

Substituting equation (12) into equation (10), the pressure response due to the
point source becomes

P(x, y, z, v)= jr0c2
0vQ0 s

a

l=0

s
a

m=0

s
a

n=0

Plmn (xs , ys , zs )Plmn (x, y, z)
(v2

lmn −v2)Nlmn
. (13)

By letting (x1, y1, z1)= (xs , ys , zs ) and Q0 =1 in equation (13), f11(v) and f21(v) are
considered as

f11(v)=P(x1, y1, z1, v)=Q0 =1, f21(v)=P(x2, y2, z2, v)=Q0 =1. (14)

f22(v) is obtained in a similar manner. It will be shown that f11(v) and f22(v)
obtained from this model are divergent, and therefore cannot be used to formulate
four poles.
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Figure 4. Geometry of the source: bs and cs are the dimensions of the source surface; (xs , ys , zs )
is the co-ordinate of the center of the surface source or the location of the point source.

3.2.     

As shown in Figures 3 and 4, the same cavity is subjected to the input flow
distributed uniformly over a small rectangular surface. This model approximates
a three-dimensional cavity with a small attached rectangular pipe. The mass flow
source of unit strength is expressed as

M� (x, y, z, v)= r0
Q0

bscs
d(x− xs )$H0y− ys +

bs

21−H0y− ys −
bs

21%
×$H0z− zs +

cs

21−H0z− zs −
cs

21%, (15)

where rs =(xs , ys , zs ) is the location of the center of the source surface, bs and cs

indicate the size of the rectangular source surface, and H( · ) is the unit step
function.

Substituting equation (15) into equation (10), the pressure response becomes

P(x, y, z, v)= jr0c2
0v

Q0

bscs
s
a

l=0

s
a

m=0

s
a

n=0

Plmn (x, y, z) cos
lpxs

Lx
CmCn

(v2
lmn −v2)Nlmn

, (16)

where

Cm = 8bs ,
2Ly

mp
cos

mpys

Ly
sin

mpbs

2Ly
,

if m=0,

if m$ 0,
(17)
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and

Cn = 8cs ,
2Lz

np
cos

npzs

Lz
sin

npcs

2Lz
,

if n=0,

if n$ 0.
(18)

Pressure response functions fij (v) (i, j=1, 2) may also be obtained by substituting
equation (16) into equation (14).

4. COMPARISON OF THE TWO PRESSURE RESPONSE SOLUTIONS TO SHOW
THE CONVERGENCE PROBLEM OF THE POINT SOURCE SOLUTION

The pressure responses defined in equation (13) and equation (16) are
considered. The following conditions are used for numerical calculations. The
cavity has a cubic geometry, each side of which is 0·2 m long (Lx =Ly =Lz =0·2).
r0 =1·21 kg/m3 and c0 =343 m/s. Flow sources are on the boundary surface
defined by x=Lx , as shown in Figure 3. Both the point source and the center of
the rectangular surface source are located at the point of (Lx , 5Ly /9, 5Lz /9). The
size of the surface source is taken as bs =Ly /14 and cs =Lz /14.

4.1.         

At first, two pressure response solutions in equations (13) and (16) are compared
at two points, r=(0·01Lx , 5Ly /9, 5Lz /9) and r=(0·99Lx , 5Ly /9, 5Lz /9). The first
point is relatively far away from the source, while the second point is very close
to the source.

Figure 5 compares the pressure responses at the first point (far from the source)
at three frequencies (100, 500 and 1000 Hz) as functions of the number of natural
modes used in the expansion in equations (13) and (16). It is seen that responses
from either model converge to approximately the same value at each frequency.

Figure 5. Pressure response at a far field point: (a) response to a surface source, (b) response to
a point source.



250

50

100

150

200

0

700

100

200

300

400

500

600

0
107 108

Number of modes

P
re

ss
u

re
 a

m
p

li
tu

d
e 

(K
P

a
)

(a)

106105104103

1000 Hz

500 Hz

100 Hz

107 108

(b)

106105104103

1000 Hz

500 Hz

100 Hz

(x,y,z) (x,y,z)

Source surface

(a) (b)

Source point

.   . 96

Figure 6. Pressure response at a near field point: (a) response to a surface source, (b) response
to a point source.

This means that the source model influences very little at far field, as should be
expected.

Figure 6 compares the responses at the second point (very close to the source)
at the same three frequencies as in Figure 5. The figure shows that the results from
the two models, while both are bounded, converge to completely different pressure
response values. For example, while the pressure at 1000 Hz is calculated to be
approximately 210 Pa from the surface source model, it is calculated to be
approximately 590 Pa from the point source model. This indicates that the
pressures induced by the point source and by the surface source (or any other
realistic sources) which have the same source strength are completely different in
the near field. Figure 7 is a conceptual explanation of this near field effect.
Imagining that one moves toward the source point or source surface, as he
approaches very close to the source, the surface source (Figure 7(a)) and the point
source (Figure 7(b)) would look completely different.

Furthermore, Figure 6 shows that a huge number of modes have to be included
for the expansion solution to obtain a converged pressure response solution in the
near field, particularly if the point source model is used. For example, the pressure
response shown in Figure 6(b) still fluctuates even after ten million modes are
added in equation (13).

Figure 7. Illustration of the difference in the responses at a near field point due to source geometry:
(a) surface source, (b) point source.
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Figure 8. Pressure responses at source point: (a) point source, (b) surface source (at the center
of source surface).

4.2.          



Figure 8(a) shows the pressure responses at the source point (xs , ys , zs ) obtained
from the point source model as functions of the number of modes used in the
calculation. The figure clearly shows divergence of the solution. In comparison,
Figure 8(b) shows the pressure response obtained from the surface source model
at the center of the source surface, also as a function of the number of terms used
in the modal expansion. It shows a converging trend of the solution although more
than ten million terms have to used due to a very slow convergence rate.

4.3.      

The pressure response at the source point obtained from the point source model
is, from equation (13):

P(xs , ys , zs , v)

=jr0c2
0vQ0 s

a

l=0

s
a

m=0

s
a

n=0

P2
lmn (xs , ys , zs )

6p2c2
0$0 l

Lx1
2

+0m
Ly1

2

+0 n
Lz1

2

%−v27Nlmn

. (19)

For a given frequency, v, the convergence of the above series is equivalent to the
convergence of the series

s
a

l=0

s
a

m=0

s
a

n=0

c2

l2 +m2 + n2 − c2
1
, (20)

where c1 and c2 are constants. Performing the summation of the series for n, with
l and m fixed, results in a finite value. The second summation for m, with l fixed,
is a sum of infinite terms with finite values, and therefore its value will become
infinite. Therefore, the series in equation (20), or its double summation form
(which is the pressure response of a two-dimensional cavity to a point source at
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the source point) becomes divergent. Conditions to have a finite pressure response
at the source point are then summarized as follow. (1) The dimension of the source
geometry should be less only by one than that of the cavity. Therefore, the line
source model must be used for two-dimensional cavities and the surface source
model must be used for three-dimensional cavities. (2) A point model can be used
only for one-dimensional systems.

Convergence of the series in expression (20) may also be checked from the
convergence at infinity of the following integration, which is an equivalent integral
form of the series in terms of convergence:

g
a

0 g
a

0 g
a

0

c2 dx dy dz
x2 + y2 + z2 − c2

1
. (21a)

This integration may be conducted in the spherical co-ordinate system, and it
becomes

p

2 g
a

0

c2

r2 − c2
1
r2 dr, (21b)

where r=zx2 + y2 + z2. It becomes obvious that the integration in expression
(21) does not have a finite value. It indicates that the series in expression (20) or
equation (19) is not bounded as well.

Figure 9. Pressure responses to a point source calculated by different methods ( f=100 Hz): ——,
solution using modal expansion method with 47×106 terms; –––, solution using modal expansion
method with 0·1×106 terms; – · –, solution using the BEM method.
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Figure 9 shows the pressure responses to the point source at the frequency of
100 Hz plotted as a function of the distance from the source point. The solid line
is obtained from equation (13) by adding up almost 47 million terms. The dashed
line is obtained using 100 000 modes. The dash-dot line is calculated using the
Boundary Element Method (BEM). The BEM solution and the summation of 47
million term indicate that the pressure at zero distance, which corresponds to f11(v)
or f22(v), becomes infinite.

Because the series in equation (19) converges extremely slowly, the authors used
a special scheme to prevent higher order terms from being ignored due to limited
digits available in a computer. In the scheme, higher order terms were added into
an intermediate series until their sum reached a value sufficiently large for the
computer to recognize relative to the current total sum. In the works reported in
references [1] and [6], the method formulating four poles by equation (2) and using
point source models was applied to an annular cavity, which required use of
Bessel’s functions. This made accurate numerical calculation of higher modes even
more difficult.

It should be noted that this divergence problem at the source point is not caused
by the modal expansion method, but by the inherent limitation of the point source
model. Another way to look at this divergence problem is as follows.

The total pressure due to a point source at an point in a three-dimensional cavity
with closed boundary can be considered as the result of the combination of the
direct response to the point source and the response to the waves reflected from
the boundary surface [9] as

P(r, v)=
jr0vQ0

4p=r− rs =
e−jk=r− rs = +(reflected waves from the boundaries), (22)

where =r− rs = is the distance from the source to the response point. The response
due to the boundary reflections, the second term in equation (22), is always finite
because it is the response to surface sources. However, the first term becomes
infinite as the response point approaches the source point (=r− rs =:0).

This divergence problem associated with the point source model in three- or
two-dimensional cavities does not become an issue unless the response at the
source point itself or at a point very near to the source has to be found.
Unfortunately, the pressure responses at the source points ( f11(v) or f22(v)) are
used in the formulation of four-pole parameters based on equation (2). Therefore,
a modification of the procedure is proposed in the next section to overcome this
problem.

5. REVISED METHOD TO FORMULATE FOUR-POLE PARAMETRS OF
THREE-DIMENSIONAL CAVITIES

A straightforward revision of the method would be to calculate pressure
response functions using the surface source model as follows:

fii (v)=gGs

P(r, v)
u(r, v)

dGs /A2
s ,

gGs

u(r, v) dGs =1,

i=1, 2, (23)
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Figure 10. Pressure distribution on the source surface ( f=100 Hz).

where P(r, v) is the pressure response calculated based on the surface source
model, Gs indicates the source surface, As is the area of the source surface, and
u(r, v) is the velocity distributed on the source surface. If a uniformly distributed
source of unit strength is employed, equation (23) can be simplified as

fii (v)=gGs

P(r, v) dGs /As , i=1, 2. (24)

Figure 10 show the pressure induced on the source surface in response to the
surface source of a uniform strength. The calculation is made at 100 Hz, while all
other parameters are kept the same as in the calculation for Figure 8(b). One
problem immediately observed from the figure is that the pressure distribution on
the source surface varies in a very wide range, which makes the validity of the
averaging process in equations (23) and (24) questionable.

Figure 11. Extended acoustic system with the cavity and two pipes.
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Figure 12. Pressure responses in the attached pipe. (a) Pressure distributions along the lines
(y= ys ). Pressure ratio is defined as the ratio of the actual pressure and the mean pressure along
the line. ——, At location x=0·255 m; – – –, at location x=0·2 m; – · –, at location x=0·2275 m.
(b) Illustration of the locations of the lines where pressures are calculated; x=0·255 is very close
to the surface source, and x=0·2 is at the intersection of the pipe and cavity.

To avoid this problem, two very short pipes may be added to the cavity, as
shown in Figure 11. The length of the pipes may be taken as short as possible,
as long as the plane wave condition develops on the source plane to make the
pressure across the section almost uniform, which will minimize the error involved
in the averaging process in equation (24). In actual application, the cross-section
areas of the pipes should be taken as the same as those of the pipes to be connected
to the cavity.

Figure 12(b) shows the pressure distribution on the input source surface,
calculated by using the Boundary Element Method (BEM), when two 6 cm long
pipes are attached to the same cavity used previously. Figure 12(a) shows the
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locations where pressures are calculated. After obtaining its four poles, the system
shown in Figure 11 may be combined with other one-dimensional or lumped
parameter elements as needed. It was somewhat surprising to see that the pressure
became relatively uniform not only on the source plane but also at the junction
to the cavity.

Obviously, a numerical method such as the BEM may have to be used for
acoustic analysis when pipes are attached even with a rectangular cavity. However,
this is not believed to be a serious limitation of this new method because most
three-dimensional cavities in practice have to be analyzed by a numerical method.
The proposed method will derive four poles of a sub-system, composed of the
cavity and two very short pipes, but not the cavity itself. Again, this is not a serious
limitation because four poles of a cavity become useful when the cavity is
connected to one-dimensional acoustic elements.

6. CONCLUSIONS

A numerical problem encountered when four-pole parameters of three-dimen-
sional cavities are derived following the method proposed by Kim, who is the
second author of this paper, and Soedel [1] is discussed. In their procedure, the
pressure responses at the input point and the output point are used to formulate
four poles. It has been shown that the point source model may be invalid for
deriving four poles of general two- or three-dimensional cavities due to the
singularity at the point source. This problem is studied in detail by investigating
the exact solutions obtained by using the modal expansion method and numerical
solutions obtained by using the Boundary Element Method. Theoretical and
practical implications of this singularity at the source point are discussed.
Necessary modifications of the original procedure are proposed to overcome this
difficulty. The new procedure uses the surface source model and the concept of
an extended system model by including two short pipes to the cavity at the input
and output sides. It is explained that the revised procedure can be used to
formulate four poles of the extended system, which serves virtually the same
purpose as the four poles of the three-dimensional cavity itself.
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